Vertex algebras, Kac-Moody algebras, and the Monster.

نویسنده

  • R E Borcherds
چکیده

It is known that the adjoint representation of any Kac-Moody algebra A can be identified with a subquotient of a certain Fock space representation constructed from the root lattice of A. I define a product on the whole of the Fock space that restricts to the Lie algebra product on this subquotient. This product (together with a infinite number of other products) is constructed using a generalization of vertex operators. I also construct an integral form for the universal enveloping algebra of any Kac-Moody algebra that can be used to define Kac-Moody groups over finite fields, some new irreducible integrable representations, and a sort of affinization of any Kac-Moody algebra. The "Moonshine" representation of the Monster constructed by Frenkel and others also has products like the ones constructed for Kac-Moody algebras, one of which extends the Griess product on the 196884-dimensional piece to the whole representation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyhedral Realization of Crystal Bases for Generalized Kac-moody Algebras

In this paper, we give polyhedral realization of the crystal B(∞) of U− q (g) for the generalized Kac-Moody algebras. As applications, we give explicit descriptions of crystals for the generalized Kac-Moody algebras of rank 2, 3 and Monster Lie algebras. Introduction In his study of Conway and Norton’s Moonshine Conjecture [3] for the infinite dimensional Z-graded representation V ♮ of the Mons...

متن کامل

Polyhedral Realization of the Highest Weight Crystals for Generalized Kac-moody Algebras

In this paper, we give a polyhedral realization of the highest weight crystals B(λ) associated with the highest weight modules V (λ) for the generalized Kac-Moody algebras. As applications, we give explicit descriptions of crystals for the generalized Kac-Moody algebras of ranks 2, 3, and Monster algebras.

متن کامل

Some Generalized Kac-Moody Algebras With Known Root Multiplicities

Starting from Borcherds’ fake monster Lie algebra we construct a sequence of six generalized Kac-Moody algebras whose denominator formulas, root systems and all root multiplicities can be described explicitly. The root systems decompose space into convex holes, of finite and affine type, similar to the situation in the case of the Leech lattice. As a corollary, we obtain strong upper bounds for...

متن کامل

The Beacon of Kac-moody Symmetry for Physics

Although the importance of developing a mathematics which transcends practical use was already understood by the Greeks over 2000 years ago, it is heartening even today when mathematical ideas created for their abstract interest are found to be useful in formulating descriptions of nature. Historically, the idea of symmetry has its scientific origin in the Greeks' discovery of the five regular ...

متن کامل

ar X iv : q - a lg / 9 50 40 17 v 1 2 4 A pr 1 99 5 Introduction to vertex operator algebras I

The theory of vertex (operator) algebras has developed rapidly in the last few years. These rich algebraic structures provide the proper formulation for the moonshine module construction for the Monster group ([B1-B2], [FLM1], [FLM3]) and also give a lot of new insight into the representation theory of the Virasoro algebra and affine Kac-Moody algebras (see for instance [DL3], [DMZ], [FZ], [W])...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 83 10  شماره 

صفحات  -

تاریخ انتشار 1986